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Abstract. In the present paper, we consider the following nonclassical two-dimensional

problems of thermoelasticity for homogeneous isotropic bodies. The boundary symmetry or

antisymmetry conditions are given on two opposite sides of the rectangular domain; the other

two sides of the rectangle are free from stresses and on one of them a temperature disturbance

function is given. The problem consists in giving a temperature on the other stress-free side

of the rectangle so that a certain linear combination of normal displacements on two segments

inside the body which are parallel to this stress-free side would take a prescribed value. The

stated problem is solved analytically, using the method of separation of variables.
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1. Introduction. In elasticity theory there exist quite a number of problems
which could be called nonclassical in view of the fact that the boundary conditions
on a part of the boundary surface are either over- or under determined [1], [2] or the
conditions on the boundary are related to the conditions inside the body (the so-called
nonlocal problems) [3], [4], [5].

In the present paper, we consider the following nonclassical two-dimensional prob-
lems of thermoelasticity for homogeneous isotropic bodies.

The boundary symmetry or antisymmetry conditions are given on two opposite
sides of the rectangular domain [6]; the other two sides of the rectangle are free from
stresses and on one of them a temperature disturbance function is given. The problem
consists in giving a temperature on the other stress-free side of the rectangle so that a
certain linear combination of normal displacements on two segments inside the body
which are parallel to this stress-free side would take a prescribed value.

The stated problem is solved analytically, using the method of separation of vari-
ables.

2. Statement of the problems. We consider the plane thermoelastic equilibrium
of an isotropic homogeneous body whose cross-section, in the Cartesian system of x, y-
coordinates, occupies the domain ω = {0 < x < x1, 0 < y < y1} (Fig. 1).
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Fig.1.

On the lateral sides of the rectangle ω the following boundary conditions are given [7]:

for x = xα : a) T = 0, σxx = 0, v = 0 or
b) ∂xT = 0, u = 0, σxy = 0.

}
(1)

The boundary conditions

y = 0 and y = y1 : σyy = 0, σyx = 0 (2)

are given on the upper and lower sides of the domain ω , and on the side y = 0 we have

for y = 0 : a) T = τ (x) or b) ∂yT = τ̃ (x) or
c) ∂yT +ΘT = τ̃ (x) .

}
(3)

Here α = 0, 1, x0 = 0; u, v are the components of the displacement vector along the
x- and y-axes, respectively; T is a temperature change; σxx, σyy are normal stresses,
σxy = σyx are tangent stresses; Θ is a given constant; τ (x), τ̃ (x) are given analytic
functions on the segment [0; x1]; ∂x ≡ ∂

∂x
; ∂y ≡ ∂

∂y
.

Note that the boundary conditions (1 a) are the antisymmetry conditions, and the
boundary conditions (1 b) are the symmetry ones [6].

The problem is to give, on the side y = y1, a temperature change T such that the
following condition be fulfilled

v (x, y2)− av (x, y3) = g (x) , (4)

where y2 and y3 are constants; without loss of generality it is assumed that 0 < y3 <
y2 < y1; a is some; g (x) is an analytic function given on the segment [0;x1].

As is known, in the presence of mass forces we describe plane thermoelastic equi-
librium by the following system of differential equations [8]
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{
µ∆u+ (λ+ µ) ∂x (∂xu+ ∂yv)− β∂xT = 0,
µ∆v + (λ+ µ) ∂y (∂xu+ ∂yv)− β∂yT = 0,

(5)

where λ and µ are the Lame’s constants; β is the linear thermal expansion coefficient.
A change of temperature T satisfies the two-dimensional plane Laplace equation

∆T = 0 (∆ = ∂xx + ∂yy) . (6)

Stresses and displacements are related by the well-known Duhamel-Neumann formulas
(see e.g. [8]).

3. Solution of the stated problems. A general solution of system (5) is repre-
sented through two harmonic functions φ and ψ. Let us write this solution omitting
the details of its derivation:

2µu =
λ+ 3µ

λ+ µ
φ+ y∂yφ+ ∂yψ +

µβ

λ+ µ
T∗, (7)

2µv = −y∂xφ− ∂xψ +
µβ

λ+ µ
T̃ , (8)

where T ∗ and T̃ are the harmonic functions related to the function T by

∂xT
∗ = T, ∂yT̃ = T, ∂yT

∗ = −∂xT̃ . (9)

Stresses are expressed through the functions φ and ψ as follows

σxx =
2λ+3µ
λ+µ

∂xφ+ y∂xyφ+ ∂xyψ, σyy = − µ
λ+µ

∂xφ− y∂xyφ− ∂xyψ,

σxy =
λ+2µ
λ+µ

∂yφ+ y∂yyφ+ ∂yyψ, σzz =
λ

λ+µ
∂xφ− µβ

λ+µ
T,

(10)

where σzz is the normal stress which supports the plane deformed state.
Since the methods of construction of solutions of all the posed problems is the same,

we will describe in detail only the solution of problem (5), (6), (1a), (2), (3a), (4).
Taking into account the boundary conditions (1a) and (2), from the general solu-

tions (7), (8) and (10) we obtain φ = ψ = 0. Thus, from these general conditions we
have

u =
β

2 (λ+ µ)
T ∗, v =

β

2 (λ+ µ)
T̃ ,

σxx = σyy = σxy = σyz = σxz = 0, σzz = −
βµ

λ+ µ
T.

(11)

The analytic functions τ (x) and g (x) are represented as the following Fourier series

τ (x) =
∞∑
m=1

τm sin
πmx

x1
, g (x) =

∞∑
m=1

gm sin
πmx

x1
, (12)

where
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τm = O
(
eγm(y3−y1)

)
, gm = O

(
e−γmy1

)
, γm =

πm

x1
. (13)

Conditions (13) guarantee the convergence of the resulting series in the domain ω̄.
Using the method of separation of variables and taking relations (9) and boundary

conditions (1a) into account, we represent the harmonic functions T ∗ and T̃ as

T ∗ =
∞∑
m=1

− 1
γm

(Ame
−γmy +Bme

γmy) cos (γmx) ,

T̃ =
∞∑
m=1

1
γm

(−Ame−γmy +Bme
γmy) sin (γmx) .

(14)

Thus the change of the temperature T is defined by the formula

T =
∞∑
m=1

(
Ame

−γmy +Bme
γmy
)
sin (γmx) . (15)

Substituting the second expression (14) into the second formula (11), for the dis-
placement v we have

v =
β

2 (λ+ µ)

∞∑
m=1

1

γm

(
−Ame−γmy +Bme

γmy
)
sin (γmx) . (16)

Substituting expansions (15) and (16) into conditions (3a) and (4), respectively,
inserting the respective series (12) in these conditions and further equating the coeffi-
cients of the identical trigonometric functions, for the sought coefficients Am and Bm

we obtain a system of two linear algebraic equations with two unknowns. This system
is presented and examined below.

4. Discussion of the obtained results. The system mentioned at the end of
the preceding subsection has the form{

Am +Bm = τm,

− (e−γmy2 − ae−γmy3)Am + (eγmy2 − eγmy3)Bm = 2γm(λ+µ)
β

gm.
(17)

The conditions by which the determinant of system (17) is different from zero impose
the following conditions on the coefficient a

a ̸= cosh (γmy2)

cosh (γmy3)
, m ∈ N. (18)

If conditions (18) are fulfilled, then all the sought coefficients Am and Bm are uniquely
defined from system (17).

For the change of the temperature T we obtain the expression

T =
∞∑
m=1

1

cosh (γmy2)− a cosh (γmy3)
{[cosh (γm (y − y2))− a cosh (γm (y − y3))] τm
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+
2γm (λ+ µ)

β
sinh (γmy) gm

}
sin (γmx) . (19)

If τm and gm satisfy conditions (13), then the obtained series (19) converges ab-
solutely and uniformly in the domain ω̄ and, moreover, the obtained function T is
analytic in this domain.

Replacing y by y1 in (19), we obtain the sought temperature value of on the bound-
ary y = y1. This is a unique solution of the posed problem. It is not difficult to prove
that the obtained solution will depend continuously on the initial data provided that
the Fourier coefficients of the functionsτ ∗ (x), g ∗ (x), which are some disturbances of
the functions τ (x), g (x), also satisfy conditions (13).

Now assume that condition (18) is not fulfilled for some mk of the index m. Then:
1) if the condition

τmn +
2 (λ+ µ) γmk

β (e−γmk
y2 − e−γmk

y3)
gmk

= 0

is fulfilled, then the stated problem has an infinite number of analytic solutions in ω̄;
2) if the latter equality is not fulfilled, then the stated problem has no solution.
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